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ABSTRACT

In this paper we attempted to present a policydotrol an immune cell-tumor cell-normal cell-drugpdel
proposed by Pillis et all. The drug administerethi patient in the form of chemotherapy is assutodzt time dependent
and follows a definite rule. It is also assumed tha drug kills all types of cells. In this papee assumed that the drug
administration follows either of the three differenathematical laws viz. (1) Logistic law, (2) Exmmtial law and (3)
Oscillatory law. Stability analyses of the tumoedrcritical points are done to find a range for @heount of drug to be

administered to the patient.
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INTRODUCTION

The growth of cancerous tumor is a very complexnphgenon that includes many biological interactiori.
date many authors has proposed many tumor celltbrovodels and has suggested various control pslicieluding
treatment such as surgery, radiotherapy, drug plygi@hemotherapy) [3]1,[41,[5],[6],[71,[8].[9],[10]11],[13],[14]. In 2000,
Pillis et all proposed a tumor growth model thatalves immune cells, tumor cells and normal cellg]] In the model
proposed by Pillis et all, the immune cells andttiraor cells compete in a predator prey fashionred®the normal cells
and the tumor cells compete for available resour¢be drug administered is assumed to kill all s/pé cells with
different kill rates. In [2], the authors studied almost similar model with the difference that tiemal cells were not
considered to interfere in the tumor growth modéth the drug administration following any of tHer¢e laws namely the
logistic law, the exponential law and the osciltsttaw. In this paper we have considered the tumodel suggested by
Pillis et all [12], in which we have assumed tha tumor cells has no effect on the growth of ndrredls as the number
of tumor cells are negligible as compared to thiatawmal cells and so the normal cells does notineecompete with the
tumor cells for the available resources whereasntirenal cells effects the growth of tumor cells.isTis possible as
because we have considered the model for smald ginmor. We have assumed the drug administratioterims of
chemotherapy follows one of the three basic mattieaidaws viz. the logistic law, the exponentiah and the oscillatory

law.
Main Study

The model proposed by Pillis ET all in [12] is
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Where, I(t),T(t), N(t) andV (t) denotes the number of immune cells, tumor cetismal cells and the amount
of drug administered at timerespectively. The units of cells are normalizedtéking the carrying capacity of normal

cells to be one.
Here,s = the constant number of immune cells presertiérbiody.
o = Steepness coefficients.
p = Recruitment rate of immune cells stimulated by phesence of tumor cells
d1= Natural death rate of immune cells.

r,= Intrinsic tumor growth rate.
1/b = Tumor population carrying capacity.
1

a;, a, and a; are the kill rates of immune cells, tumor cellsdamormal cells respectively due to drug

administration.

In the above model we have considered a small dizedr so that the number of tumor cells is neblaias
compared to that of normal cells. So the tumorscledis no significant effect on the growth of noreells. Thus we can

choose the value of the parametgto be zero.
As studied by the authors in [2], we also assurhegketdifferent drug administration model as givelot:

The drug equation as per logistic growth is afod:

=@V (1 BsV) @)

dc
The drug equation as per exponential growth ibews:

av _
2 - 4se B3V_V3 (2

The drug equation as per oscillatory growth iscdigvs:

Y — @,Sin(BsV) (3)

dc

Wherea; = intrinsic rate of drug application,/$; = maximum drug carrying capacity; = a constant rate of
reduction of drug.

Since the main objective of drug administratiomoisnake the tumor size zero so we have considéedutmor

free equilibrium points and analyzed their stajailit
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Logistic Drug Administration Model

v _ 0= — 1
dt—0—>V—00rV— //33

Wheny = O,Z—:z 0 givesT = 0 or T = 2=c2/=¢sN

biry
When,V =0,T = 0,‘;—1:= 0givesN=00rN =1

But N = 0 is the dead case and so it is discounted.

dl .
Sowheny =0,T=0,N =1,—-=0gives/ = S/d1 = Iy(say)

Thus a tumor free equilibrium point4g1,, 0,1,0), which is also drug free.

1
r1—cpl—c3N—az(1—e /33)

biry

Again forV = 1/ﬁ’3’ Z—: =0givesT=0o0rT =

_ a3 (1—e_1/

. B
ForV=1/ﬁ3,T=O,Z—’:=OQ|vesN=00rN=1 3)=N1(say)

2

N

When,V = 1/,83’ T=0,N=N, then% = 0 givesl = = I, (say)

—————
di+as(1-e /P3)

Thus another tumor free equilibrium pointBél;, 0, N, 1/33).
The Jacobian matrix of the tumor growth model far fbogistic drug administration at the equilibrigmint A is,

—dy 22—y 0 —ail \
]L:|0 Tl—CZIO—C3 0 O

i I
0 0 —1‘2 _a3
0 0 0 as
The eigen values gf: are:
M =—dy, Ay =1 —c3ly — 3, A3 = —1, andi, = a;.

The equilibrium pointd is stable only whem,, A,,1; and A, are all less than zero. Baf, = a; < 0 is not
possible because negative drug administration isan@alistic case Thus there does not exist amptiuree drug free
stable equilibrium point i.e. the tumor size can be diminished to zero without drug administratemd this is a very

realistic case.

The Jacobian matrix of the tumor growth model far logistic drug administration at the equilibrigmint B is,

_1
—dy—a,(1—e /ﬁ3) pTIl -l 0 —ale_1/13311
~1 0
JE=|0 r—cly —csN, —ay(1—e /B3) 0 -1 1
0 0 (1—2N)r, —as(1—e /Bs) _gze /oan,
0 O 0 _a3

The eigen values gf are:
_1/
M=—di—a;(1—e 'F3),
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_1
Ay =1 =l —csNy —a,(1—e /B3)a

_1
A= (1= 2N)r, —az(1—e” /63)
andl‘} = —(13.

Sinceld, = —a3 < 0 is obvious so foB to be stable, we must havg, < 0, 1, < 0 andA; < 0.

1 1 1
——<0but—>0 (—
09((11a+1d1) B3 (/33

a
a;+dq

A4 <0 givesﬁi > Log( ) , which holds for anys; because‘% <1l=>
3 1 1

represents the maximum amount of drug administiagind so it is positive).

A3 < 0 givesp; > ;113) . But this happens only whepn—r, > 0.

Log (a3 =

c2a3

Again 1, < 0 givesf; < Lo;

C2S8
=, Wherem =1, —c; — = andn = —
9G = dy

+a
) 2

r
n—m 2

Thus for the tumor free equilibrium poit to be stable, we must restrict the maximum amafntrug

administrationﬁl— by the rule
3

1 1 .
as )<ﬁ3<Log(L)lfa3—T'2>0

LOg(ag—Tz n-m
And
1 .
—_— -1, <
0<pB3< PPy ifaz—1, <0

The following are the plots of number of immuneseiumor cells and normal cells Vs. time respedyivior the
parameter values within the restricted range fer stability of the equilibrium poinB. The plots clearly shows the
stability of the equilibrium poinB. The parameter values we chose to plot the grapkis = 0.05, p =1, ¢ = 0.3,
c=02,d,=02,a,=02,n=04,b; =15,¢c,=03,¢3=0.2,a, =05, =0.35,c, =0, ag = 0.25, a3 = 0.5,
B; = 1.6 and the initial points are taken H®) = S/dl' T(0) = 1075, N(0) = 0.9, V(0) = 1075.
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Figure 1

Exponential Drug Administration Model

v _ 0= -1 a3\ _
L= 0=>V= /BgLog (y3) V'(say)
—col—caN—ay(1—e="’
Forv = v, %L = 0 givesT = 0 or T = A=clzesV=azlze )
dt byry
—e V'
ForV=V’,T=O,Z—IZ=OgivesN=OorN=1—%=N’(say)
2

N = 0 is the dead case and so it is discounted.

N

When,V = V',T =0, N = N’ then". = 0 givesl = = 1'(say)

di+aq(1-e”V
Thus the only tumor free equilibrium pointA¢I’, 0, N',V").

The Jacobian matrix of the tumor growth model far fbogistic drug administration at the equilibrigint P is,

—d—a,(1—e") % —ql 0 —aeV'r
]1% =10 mn— CZI’ - C3N, - az(l - e_V’) 0 / O—V’ ’
0 0 (1-2N)r,—a;(1-e™”) —aze” N
0 0 0 _a3333_ﬁ3vr

The eigen values gf are:

A=—d—a(1-e™),

Ay=1—c ' —csN' —a,(1—e™V),

A3 = (1—2N)r, —as(1—e V') andl, = —a;Bse PV .

Sincel, = —a3ﬁ3e‘/33"' < 0 always holds so faP to be stable we need only < 0, 4, < 0 andA; < 0

a3
1, <0 Givesp, < —2r3_ 0
! 3 L0g(a1a+1d1)
. Log (G2 . )
A3 < 0 Givesp; > Wﬁ) , this holds only when; —r, > 0 (i)
az—rz
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a3

Lo
Againl, < 0 Givesp; < —%2—  wherem =1, — c; — -2 andn =
Log(z—>) dyq

C20a3

+a iii
i 2+ a, (i)

Thus for the tumor free equilibrium poift to be stable, we must restrict the maximum amafntirug
administrationﬁL by the rule
3
00(573)  tos(53)
n

L
ﬁ <Ps < Mlnlmum{Lo (2L * og

aq+dq

)}ifa3—r2>0

n-m.

Log(jf—:) Log(jf—:)
n

}
g9 (a1a+1d1) ' Log (m)

The following are the plots of number of immuneseiumor cells and normal cells Vs. time respedyivior the

0<pB;< Minimum{L ifaz—1, <0

parameter values within the restricted range ferstability of the equilibrium poink. The plot clearly shows the stability
of the equilibrium point. The parameter values we chose to plot the graphs = 0.05, p =1, 0 = 0.3, ¢; = 0.2,
dy=02,a,=02,,=04,by =15,¢,=03,c3=0.2,a, =05, =0.35,¢c4, =0, a; = 0.25, a3 = 0.5, y3 = 0.05,
B5 = 3 and the initial points are taken H®) = S/dl, T(0) =1075,N(0) =0.9,V(0) = 107°.
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Oscillatory Drug Administration Model

d_V_ _ _ kn’ _rx . Py ,
—=0=>V= /ﬁs = V*(say), where k is a positive integer
—c]— — _e~V*
ForV =V*, %L = 0 givesT = 0 orT = 2-2=sN-alze )
dt byry
_eV*
FoV =V*,T =0, =0 givesN = 0 orN = 1 — 2= = N*(say)
2
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As N = 0 is the dead case and so it is not feasible ambulited.

N

When,V = V*, T =0, N = N* then = 0 gives = 7 = 1" (say)

di+a,(1—-e”
Thus the only tumor free equilibrium point for tiedel i€ (I*,0, N*, V™).

The Jacobian matrix of the tumor growth model far logistic drug administration at the equilibrigmint Q is,

—d;—a,(1—e”") pTI* —ql’ 0 —ae’V'r
J6=1|0 r =" —csN"—a,(1—e™") 0 . 0 .
0 0 (1-=2Nr,—az;(1—e™) —aze V' N*
0 0 0 —azB3Cos(B3V7)

The Eigen values gf; are:

h=—d—a,(1-e™"),

Ay =1 — " —csN* —ay(1—e™V),

A3 = (1 =2N"1, —az(1 —e V) andl, = —a3B;Cos(B5V*).

ForQ to be stablg, < 0,1, <0, 1; < 0 andA, < 0 must be satisfied.

Ay <0 =>Cos(B5V*) <0=> Cos(km) < 0=>kisodd

ai

Log( ) 1 i

A1 < 0 gives— > —341 \which holds for any, because-2— < 1 => ——7— < 0 but— > 0.
Bs km ai+d; Log(3ay) Bs
A3z < 0 givesf; > % , this holds only when; —r, > 0 (b)
az-r2
Again, < 0 givesfs < ——— , wherem =1, — c; — 22 andn = — 2% 4 q, (c)
Log(>—>) dq T2

n-m
Thus for the tumor free equilibrium poi@ to be stable, we must restrict the maximum amafntrug

administrationﬁL by the rule
3

km km .
m<ﬂ3<mlfa3—rz>o

asz-rz n-m

And

k .
0<,33<Wl)lfa3—r2§0

n—-m

Herek is an odd positive integer. Since we are intecestaninimum drug administration so that the noreells

gets less effected, so we chbse 1. ThenV* = /33 and the relation between the parameters become

w b4 .
m<ﬂ3<mlfa3—rz>o

asz-rz n-m

And
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s .
_ — <
0<,/33<Log(n)lfa3 <0

n—-m

The following are the plots of number of immunelsefumor cells and normal cells vs. time respe&tyivor the
parameter values within the restricted range ferstability of the equilibrium poigt The plot clearly shows the stability
of the equilibrium poin@. The parameter values we chose to plot the graphs = 0.05, p=1, 0 = 0.3, ¢c; = 0.2,
dy=02,a,=02,1=04,b;=15,¢,=03,¢3=0.2,a,=05,n=035c¢,=0,a; =025, a3 =05, B3 =45
and the initial points are taken H®) = S/dl, T(0) =1075,N(0) = 0.9,V (0) = 107°.
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Figure 3
CONCLUSIONS

The stability of all the tumor free equilibrium pts of the immune-tumor-normal cell model subjediedhe
three different drug administration laws are anediy4t is found that for all the three models théoes not exist any stable
tumor free drug free equilibrium point whereas ¢hexists tumor free stable equilibrium points $gitig certain

conditions for the maximum drug dose.
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