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ABSTRACT  

In this paper we attempted to present a policy to control an immune cell-tumor cell-normal cell-drug model 

proposed by Pillis et all. The drug administered to the patient in the form of chemotherapy is assumed to be time dependent 

and follows a definite rule. It is also assumed that the drug kills all types of cells. In this paper we assumed that the drug 

administration follows either of the three different mathematical laws viz. (1) Logistic law, (2) Exponential law and (3) 

Oscillatory law. Stability analyses of the tumor free critical points are done to find a range for the amount of drug to be 

administered to the patient. 
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INTRODUCTION  

The growth of cancerous tumor is a very complex phenomenon that includes many biological interactions. Till 

date many authors has proposed many tumor cell growth models and has suggested various control policies including 

treatment such as surgery, radiotherapy, drug therapy (Chemotherapy) [3],[4],[5],[6],[7],[8],[9],[10],[11],[13],[14]. In 2000, 

Pillis et all proposed a tumor growth model that involves immune cells, tumor cells and normal cells [12]. In the model 

proposed by Pillis et all, the immune cells and the tumor cells compete in a predator prey fashion whereas the normal cells 

and the tumor cells compete for available resources. The drug administered is assumed to kill all types of cells with 

different kill rates. In [2], the authors studied an almost similar model with the difference that the normal cells were not 

considered to interfere in the tumor growth model, with the drug administration following any of the three laws namely the 

logistic law, the exponential law and the oscillatory law. In this paper we have considered the tumor model suggested by 

Pillis et all [12], in which we have assumed that the tumor cells has no effect on the growth of normal cells as the number 

of tumor cells are negligible as compared to that of normal cells and so the normal cells does not need to compete with the 

tumor cells for the available resources whereas the normal cells effects the growth of tumor cells. This is possible as 

because we have considered the model for small sized tumor. We have assumed the drug administration in terms of 

chemotherapy follows one of the three basic mathematical laws viz. the logistic law, the exponential law and the oscillatory 

law. 

Main Study 

The model proposed by Pillis ET all in [12] is 

��
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Where,		��"�,��"�, ��"� and  �"� denotes the number of immune cells, tumor cells, normal cells and the amount 

of drug administered at time " respectively. The units of cells are normalized by taking the carrying capacity of normal 

cells to be one. 

Here, � = the constant number of immune cells present in the body.  

#	= Steepness coefficients.  

ρ	= Recruitment rate of immune cells stimulated by the presence of tumor cells  

�1= Natural death rate of immune cells.  

�
= Intrinsic tumor growth rate. 

1 �
%  = Tumor population carrying capacity. 

�
, �� and �� are the kill rates of immune cells, tumor cells and normal cells respectively due to drug 

administration. 

In the above model we have considered a small sized tumor so that the number of tumor cells is negligible as 

compared to that of normal cells. So the tumor cells has no significant effect on the growth of normal cells. Thus we can 

choose the value of the parameter �� to be zero. 

As studied by the authors in [2], we also assumed three different drug administration model as given below: 

The drug equation as per logistic growth is as follows:  

��
�� = &� �1 − '� �                                                                                                                                                  (1) 

The drug equation as per exponential growth is as follows:  

��
�� = &���()� − *�                                                                                                                                                   (2) 

The drug equation as per oscillatory growth is as follows:  

��
�� = &�+,-�'� �                                                                                                                                                     (3) 

Where &� = intrinsic rate of drug application, 1/'� = maximum drug carrying capacity, &� = a constant rate of 

reduction of drug. 

Since the main objective of drug administration is to make the tumor size zero so we have considered the tumor 

free equilibrium points and analyzed their stability. 
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Logistic Drug Administration Model 

��
�� = 0 =>  = 0	1�	 = 1 '�%   

When, = 0, 
��
�� = 0 gives � = 0 or � = 23�45��4)�6323  

When,  = 0, � = 0, 
��
�� = 0 gives � = 0 or � = 1 

But � = 0 is the dead case and so it is discounted. 

So when,  = 0, � = 0, � = 1, 
��
�� = 0 gives � = � �
% = �7���8� 

Thus a tumor free equilibrium point is 9��7, 0,1,0�, which is also drug free. 

Again for  = 1 '�% , 
��
�� = 0 gives � = 0 or � = 23�45��4)��;5�
�<=3 >)% �

6323  

For  = 1 '�% , � = 0, 
��
�� = 0 gives � = 0 or � = 1 − ;)�
�<=3 >)% �

25 = �
���8� 
When,  = 1 '�% , � = 0, � = �
 then 

��
�� = 0 gives � = ?

�3
;3�
�<=3 >)% � = �
���8� 
Thus another tumor free equilibrium point is @��
, 0, �
, 1 '�% �. 
The Jacobian matrix of the tumor growth model for the logistic drug administration at the equilibrium point 9 is, 

ABC =
D
EF
−�
 ��G	 − �
�7 0 −�
�7
000

�
 − ���7 − ��00
0−��0

0−��&�
	
H
IJ  

The eigen values of ABC are: 

K
 = −�
, K� = �
 − ���7 − ��, K� = −�� and K� = &�. 
The equilibrium point 9 is stable only when K
, K�, K�	�-�	K� are all less than zero. But K� = &� < 0 is not 

possible because negative drug administration is not a realistic case Thus there does not exist any tumor free drug free 

stable equilibrium point i.e. the tumor size can not be diminished to zero without drug administration and this is a very 

realistic case.  

The Jacobian matrix of the tumor growth model for the logistic drug administration at the equilibrium point @ is, 

AMC =
D
EF

−�
 − �
�1 − ��
 ()% � ��3	 − �
�
 0 −�
��
 ()% �

000

�
 − ���
 − ���
 − ���1 − ��
 ()% �00
�1 − 2�
�0��0 − ���1 − ��
 ()% �

0
−����
 ()% �
−&�

	
H
IJ  

The eigen values of AMC are: 

K
 = −�
 − �
�1 − ��
 ()% �, 
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K� = �
 − ���
 − ���
 − ���1 − ��
 ()% �,  
K� = �1 − 2�
��� − ���1 − ��
 ()% �  
and K� = −&�. 
Since K� = −&� < 0 is obvious so for @ to be stable, we must have, K
 < 0, K� < 0 and K� < 0. 

K
 < 0 gives 


() > O1P� ;3;3
�3� , which holds for any '� because 

;3;3
�3 < 1 => 

CQR� S3S3TU3�

< 0 but 


() > 0 (



() 

represents the maximum amount of drug administration and so it is positive). 

K� < 0 gives '� > 

CQR� S)S)=V5�

 . But this happens only when�� − �� > 0. 

Again K� < 0 gives '� < 

CQR� WW=X� , where Y = �
 − �� − 45?�3  and - = − 45;)25 + �� 

Thus for the tumor free equilibrium point @ to be stable, we must restrict the maximum amount of drug 

administration 


()	 by the rule  



CQR� S)S)=V5�

< '� < 

CQR� WW=X� 	,�	�� − �� > 0  

And  

0 < '� < 

CQR� WW=X� 	,�	�� − �� ≤ 0  

The following are the plots of number of immune cells, tumor cells and normal cells Vs. time respectively for the 

parameter values within the restricted range for the stability of the equilibrium point @. The plots clearly shows the 

stability of the equilibrium point @. The parameter values we chose to plot the graphs are � = 0.05, ] = 1, # = 0.3, 

�
 = 0.2, �
 = 0.2, �
 = 0.2, �
 = 0.4, �
 = 1.5, �� = 0.3, �� = 0.2, �� = 0.5, �� = 0.35, �� = 0, �� = 0.25, &� = 0.5, 

'� = 1.6 and the initial points are taken as ��0� = � �
% , ��0� = 10�a, ��0� = 0.9,  �0� = 10�a. 
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Figure 1 

Exponential Drug Administration Model 

��
�� = 0 =>  = 1 '�% O1P cd)e)f =  g���8�  
For  =  g, ���� = 0 gives � = 0 or � = 23�45��4)��;5�
�<=hi�6323  

For  =  g, � = 0, 
��
�� = 0 gives � = 0 or � = 1 − ;)�
�<=hi�25 = �g���8� 

� = 0 is the dead case and so it is discounted. 

When,  =  g, � = 0, � = �g then 
��
�� = 0 gives � = ?

�3
;3�
�<=hi� = �g���8� 
Thus the only tumor free equilibrium point is j��g, 0, �g,  g�. 
The Jacobian matrix of the tumor growth model for the logistic drug administration at the equilibrium point j is, 

AkC =
D
EF

−�
 − �
�1 − ���i� ��i
	 − �
�g 0 −�
���i�g

000
�
 − ���g − ���g − ���1 − ���i�00 �1 − 2�g�0��0 − ���1 − ���i�

0−�����i�g
−&�'���()�i

	
H
IJ  

The eigen values of AkC are: 

K
 = −�
 − �
�1 − ���i�, 
K� = �
 − ���g − ���g − ���1 − ���i�,  
K� = �1 − 2�
��� − ���1 − ���i� and K� = −&�'���()�i. 
Since K� = −&�'���()�i < 0 always holds so for j to be stable we need only K
 < 0, K� < 0 and K� < 0 

K
 < 0 Gives '� < CQR�l)m)�CQR� S3S3TU3�
                                                                                                                                    (i) 

K� < 0 Gives '� > CQR�l)m)�CQR� S)S)=V5�
 , this holds only when �� − �� > 0                                                                          (ii) 
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Again K� < 0 Gives '� < CQR�l)m)�CQR� WW=X� , where Y = �
 − �� − 45?�3  and - = − 45;)25 + ��                                            (iii) 

Thus for the tumor free equilibrium point j to be stable, we must restrict the maximum amount of drug 

administration 


()	 by the rule  

CQRcl)m)fCQRc S)S)=V5f
	< '� < n,-,YoY{ CQRcl)m)fCQRc S3S3TU3f

	 , CQRcl)m)fCQRc WW=Xf}	,�	�� − �� > 0  

And  

0 < '� < n,-,YoY{ CQRcl)m)fCQRc S3S3TU3f
	 , CQRcl)m)fCQRc WW=Xf}	,�	�� − �� ≤ 0  

The following are the plots of number of immune cells, tumor cells and normal cells Vs. time respectively for the 

parameter values within the restricted range for the stability of the equilibrium point j. The plot clearly shows the stability 

of the equilibrium pointj. The parameter values we chose to plot the graphs are � = 0.05, ] = 1, # = 0.3, �
 = 0.2, 

�
 = 0.2, �
 = 0.2, �
 = 0.4, �
 = 1.5, �� = 0.3, �� = 0.2, �� = 0.5, �� = 0.35, �� = 0, �� = 0.25, &� = 0.5, *� = 0.05, 

'� = 3 and the initial points are taken as ��0� = � �
% , ��0� = 10�a, ��0� = 0.9,  �0� = 10�a. 

 

 

Figure 2 

Oscillatory Drug Administration Model 
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�� = 0 =>  = rs '�% =  ∗���8�, uℎ���	r	,�	�	w1�,",x�	,-"�P��  

For =  ∗, ���� = 0 gives � = 0 or � = 23�45��4)��;5�
�<=h∗�6323  

For =  ∗, � = 0, 
��
�� = 0 gives � = 0 or � = 1 − ;)�
�<=h∗�25 = �∗���8�  
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As � = 0 is the dead case and so it is not feasible and discounted. 

When,  =  ∗, � = 0, � = �∗ then 
��
�� = 0 gives � = ?

�3
;3�
�<=h∗� = �∗���8� 
Thus the only tumor free equilibrium point for this model isy��∗, 0, �∗,  ∗�. 
The Jacobian matrix of the tumor growth model for the logistic drug administration at the equilibrium point y is, 

AzC =
D
EF

−�
 − �
�1 − ���∗� ��∗
	 − �
�∗ 0 −�
���∗�∗

000
�
 − ���∗ − ���∗ − ���1 − ���∗�00 �1 − 2�∗�0��0 − ���1 − ���∗� 0−�����∗�∗

−&�'�{1��'� ∗�
	
H
IJ  

The Eigen values of AzC  are: 

K
 = −�
 − �
�1 − ���∗�, 
K� = �
 − ���∗ − ���∗ − ���1 − ���∗�,  
K� = �1 − 2�∗��� − ���1 − ���∗� andK� = −&�'�{1��'� ∗�. 
For y to be stableK
 < 0, K� < 0, K� < 0 and K� < 0 must be satisfied. 

K� < 0 => {1��'� ∗� < 0 => {1��rs� < 0 => r	,�	1��  

K
 < 0 gives 


() >

CQR� S3S3TU3�|}  , which holds for any '� because 
;3;3
�3 < 1 => 


CQR� S3S3TU3�
< 0 but 



() > 0. 

K� < 0 gives '� > |}
CQR� S)S)=V5�

 , this holds only when �� − �� > 0                                                                           (b) 

Again K� < 0 gives '� < |}
CQR� WW=X� , where Y = �
 − �� − 45?�3  and - = − 45;)25 + ��                                              (c) 

Thus for the tumor free equilibrium point y to be stable, we must restrict the maximum amount of drug 

administration 


()	 by the rule  

|}
CQRc S)S)=V5f

	< '� <	 |}
CQRc WW=Xf 	,�	�� − �� > 0  

And  

0 < '� < |}
CQR� WW=X� 	,�	�� − �� ≤ 0  

Here r is an odd positive integer. Since we are interested in minimum drug administration so that the normal cells 

gets less effected, so we choser = 1. Then  ∗ = s '�%  and the relation between the parameters become  

}
CQRc S)S)=V5f

	< '� <	 }
CQRc WW=Xf 	,�	�� − �� > 0  

And  



50                                                                                                                                                                                                  Ranu Paul 

 
Impact Factor (JCC): 2.6305                                                                                                                   NAAS Rating 3.19 

0 < '� < }
CQR� WW=X� 	,�	�� − �� ≤ 0  

The following are the plots of number of immune cells, tumor cells and normal cells vs. time respectively for the 

parameter values within the restricted range for the stability of the equilibrium pointy. The plot clearly shows the stability 

of the equilibrium pointy. The parameter values we chose to plot the graphs are � = 0.05, ] = 1, # = 0.3, �
 = 0.2, 

�
 = 0.2, �
 = 0.2, �
 = 0.4, �
 = 1.5, �� = 0.3, �� = 0.2, �� = 0.5, �� = 0.35, �� = 0, �� = 0.25, &� = 0.5, '� = 4.5 

and the initial points are taken as ��0� = � �
% , ��0� = 10�a, ��0� = 0.9,  �0� = 10�a. 

 

 

Figure 3 

CONCLUSIONS 

The stability of all the tumor free equilibrium points of the immune-tumor-normal cell model subjected to the 

three different drug administration laws are analyzed. It is found that for all the three models there does not exist any stable 

tumor free drug free equilibrium point whereas there exists tumor free stable equilibrium points satisfying certain 

conditions for the maximum drug dose. 
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